Niche differentiation and biogeography of Bathyarchaeia in paddy soil ecosystems: a case study in eastern China

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Dokumenter

  • Fulltext

    Forlagets udgivne version, 7,91 MB, PDF-dokument

Bathyarchaeia (formerly Bathyarchaeota) is a group of highly abundant archaeal communities that play important roles in global biogeochemical cycling. Bathyarchaeia is predominantly found in sediments and hot springs. However, their presence in arable soils is relatively limited. In this study, we aimed to investigate the spatial distributions and diversity of Bathyarchaeia in paddy soils across eastern China, which is a major rice production region. The relative abundance of Bathyarchaeia among total archaea ranged from 3 to 68% in paddy soils, and Bathy-6 was the dominant subgroup among the Bathyarchaeia (70–80% of all sequences). Bathyarchaeia showed higher migration ability and wider niche width based on the neutral and null model simulations. Bathy-6 was primarily assembled by deterministic processes. Soil pH and C/N ratio were identified as key factors influencing the Bathyarchaeia composition, whereas C/N ratio and mean annual temperature influenced the relative abundance of Bathyarchaeia. Network analysis showed that specific Bathyarchaeia taxa occupied keystone positions in the archaeal community and co-occurred with some methanogenic archaea, including Methanosarcina and Methanobacteria, and ammonia-oxidizing archaea belonging to Nitrososphaeria. This study provides important insights into the biogeography and niche differentiation of Bathyarchaeia particularly in paddy soil ecosystems.

OriginalsprogEngelsk
Artikelnummer13
TidsskriftEnvironmental Microbiome
Vol/bind19
Antal sider12
ISSN1944-3277
DOI
StatusUdgivet - 2024

Bibliografisk note

Funding Information:
This work was supported by the National Natural Science Foundation of China (grant no. 43991332 and 41977323) and Chinese Scholarship Council of the Ministry of Education.

Publisher Copyright:
© The Author(s) 2024.

ID: 385229319