The Roles of Riblet and Superhydrophobic Surfaces in Energy Saving Using a Spatial Correlation Analysis

Research output: Contribution to journalJournal articleResearchpeer-review

Documents

  • Fulltext

    Final published version, 1.84 MB, PDF document

Riblet and superhydrophobic surfaces are two typical passive control technologies used to save energy. In this study, three microstructured samples—a micro-riblet surface (RS), a superhydrophobic surface (SHS), and a novel composite surface of micro-riblets with superhydrophobicity (RSHS)—were designed to improve the drag reduction rate of water flows. Aspects of the flow fields of microstructured samples, including the average velocity, turbulence intensity, and coherent structures of water flows, were investigated via particle image velocimetry (PIV) technology. A two-point spatial correlation analysis was used to explore the influence of the microstructured surfaces on coherent structures of water flows. Our results showed that the velocity on microstructured surface samples was higher than that on the smooth surface (SS) samples, and the turbulence intensity of water on the microstructured surface samples decreased compared with that on the SS samples. The coherent structures of the water flow on microstructured samples were restricted by length and structural angles. The drag reduction rates of the SHS, RS, and RSHS samples were −8.37 %, −9.67 %, and −17.39 %, respectively. The novel established RSHS demonstrated a superior drag reduction effect and could improve the drag reduction rate of water flows.

Original languageEnglish
Article number875
JournalNanomaterials
Volume13
Issue number5
Number of pages16
ISSN1687-4110
DOIs
Publication statusPublished - 2023

Bibliographical note

Publisher Copyright:
© 2023 by the authors.

    Research areas

  • composite micro-riblets and superhydrophobic surfaces, energy saving, micro-riblet surfaces, superhydrophobicity, two-point spatial correlation analysis

ID: 340403498