The F-bZIP-regulated Zn deficiency response in land plants

Research output: Contribution to journalReviewResearchpeer-review

Documents

  • Fulltext

    Final published version, 1.04 MB, PDF document

MAIN CONCLUSION: This review describes zinc sensing and transcriptional regulation of the zinc deficiency response in Arabidopsis, and discusses how their evolutionary conservation in land plants facilitates translational approaches for improving the Zn nutritional value of crop species. Zinc is an essential micronutrient for all living organisms due to its presence in a large number of proteins, as a structural or catalytic cofactor. In plants, zinc homeostasis mechanisms comprise uptake from soil, transport and distribution throughout the plant to provide adequate cellular zinc availability. Here, I discuss the transcriptional regulation of the response to zinc deficiency and the zinc sensing mechanisms in Arabidopsis, and their evolutionary conservation in land plants. The Arabidopsis F-group basic region leucine-zipper (F-bZIP) transcription factors bZIP19 and bZIP23 function simultaneously as sensors of intracellular zinc status, by direct binding of zinc ions, and as the central regulators of the zinc deficiency response, with their target genes including zinc transporters from the ZRT/IRT-like Protein (ZIP) family and nicotianamine synthase enzymes that produce the zinc ligand nicotianamine. I note that this relatively simple mechanism of zinc sensing and regulation, together with the evolutionary conservation of F-bZIP transcription factors across land plants, offer important research opportunities. One of them is to use the F-bZIP-regulated zinc deficiency response as a tractable module for evolutionary and comparative functional studies. Another research opportunity is translational research in crop plants, modulating F-bZIP activity as a molecular switch to enhance zinc accumulation. This should become a useful plant-based solution to alleviate effects of zinc deficiency in soils, which impact crop production and crop zinc content, with consequences for human nutrition globally.

Original languageEnglish
Article number108
JournalPlanta
Volume256
Issue number6
ISSN0032-0935
DOIs
Publication statusPublished - 2022

Bibliographical note

© 2022. The Author(s).

    Research areas

  • Humans, Arabidopsis/metabolism, Arabidopsis Proteins/genetics, Basic-Leucine Zipper Transcription Factors/genetics, Embryophyta/metabolism, Zinc/metabolism, Plants/metabolism

ID: 326040902