Plants have evolved an astounding diversity of chemical complexity to facilitate biotic interactions. These specialized compounds are involved in both beneficial interactions of plants with other organism and in the chemical-arms race between plants and their pests.

This continuous co-evolution has impacted genome organization and gene families through recruitment of genes as drivers for increased biochemical innovations to fine tune biotic interactions.

We utilize a multidisciplinary approach, combining classical biochemistry, metabolomics, molecular biology and molecular phylogenetic to decode how evolution works at the molecular and biochemical level.

Currently we are working on plant triterpenoids and co-evolution of cyanogenic glucosides in butterflies and moth and their host plants.

Find more information about the group in the menu below.