Synergistic inhibition of green rust crystallization by co-existing arsenic and silica

Research output: Contribution to journalJournal articleResearchpeer-review

Arsenic and silica are known inhibitors of the crystallization of iron minerals from poorly ordered precursor phases. However, little is known about the effects of co-existing As and Si on the crystallization and long-term stability of mixed-valence Fe minerals such as green rust (GR). GR usually forms in anoxic, Fe2+-rich, near-neutral pH environments, where they influence the speciation and mobility of trace elements, nutrients and contaminants. In this work, the Fe2+-induced transformation of As- and/or Si-bearing ferrihydrite (FHY) was monitored at pH 8 ([As]initial = 100 μM, Si/As = 10) over 720 h. Our results showed that in the presence of As(III) + Si or As(V) + Si, GR sulfate (GRSO4) formation from FHY was up to four times slower compared to single species system containing only As(III), As(V) or Si. Co-existing As(III) + Si and As(V) + Si also inhibited GRSO4 transformation to magnetite, contrary to systems with only Si or As(V). Overall, our findings demonstrate the synergistic inhibitory effect of co-existing Si on the crystallization and solid-phase stability of As-bearing GRSO4, establishing an inhibitory effect ladder: As(III) + Si > As(V) + Si > As(III) > Si > As(V). This further highlights the importance of GR in potentially controlling the fate and mobility of As in ferruginous, Si-rich groundwater and sediments such as those in South and Southeast Asia.

Original languageEnglish
JournalEnvironmental Science. Processes & Impacts
Volume26
Issue number3
Pages (from-to)632-643
Number of pages12
ISSN2050-7887
DOIs
Publication statusPublished - 2024

    Research areas

  • Arsenic/chemistry, Silicon Dioxide, Crystallization, Oxidation-Reduction, Ferric Compounds/chemistry, Minerals/chemistry

ID: 389362084