Involvement of cytochrome P450 in oxime production in glucosinolate biosynthesis as demonstrated by an in vitro microsomal enzyme system isolated from jasmonic acid-induced seedlings of Sinapis alba L.

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

Involvement of cytochrome P450 in oxime production in glucosinolate biosynthesis as demonstrated by an in vitro microsomal enzyme system isolated from jasmonic acid-induced seedlings of Sinapis alba L. / Du, Liangcheng; Lykkesfeldt, Jens; Olsen, Carl Erik; Halkier, Barbara Ann.

In: Proceedings of the National Academy of Sciences of the United States of America, Vol. 92, No. 26, 19.12.1995, p. 12505-12509.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Du, L, Lykkesfeldt, J, Olsen, CE & Halkier, BA 1995, 'Involvement of cytochrome P450 in oxime production in glucosinolate biosynthesis as demonstrated by an in vitro microsomal enzyme system isolated from jasmonic acid-induced seedlings of Sinapis alba L.', Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 26, pp. 12505-12509. https://doi.org/10.1073/pnas.92.26.12505

APA

Du, L., Lykkesfeldt, J., Olsen, C. E., & Halkier, B. A. (1995). Involvement of cytochrome P450 in oxime production in glucosinolate biosynthesis as demonstrated by an in vitro microsomal enzyme system isolated from jasmonic acid-induced seedlings of Sinapis alba L. Proceedings of the National Academy of Sciences of the United States of America, 92(26), 12505-12509. https://doi.org/10.1073/pnas.92.26.12505

Vancouver

Du L, Lykkesfeldt J, Olsen CE, Halkier BA. Involvement of cytochrome P450 in oxime production in glucosinolate biosynthesis as demonstrated by an in vitro microsomal enzyme system isolated from jasmonic acid-induced seedlings of Sinapis alba L. Proceedings of the National Academy of Sciences of the United States of America. 1995 Dec 19;92(26):12505-12509. https://doi.org/10.1073/pnas.92.26.12505

Author

Du, Liangcheng ; Lykkesfeldt, Jens ; Olsen, Carl Erik ; Halkier, Barbara Ann. / Involvement of cytochrome P450 in oxime production in glucosinolate biosynthesis as demonstrated by an in vitro microsomal enzyme system isolated from jasmonic acid-induced seedlings of Sinapis alba L. In: Proceedings of the National Academy of Sciences of the United States of America. 1995 ; Vol. 92, No. 26. pp. 12505-12509.

Bibtex

@article{e85d1bae4cea42c180f27fa8acfdaaf1,
title = "Involvement of cytochrome P450 in oxime production in glucosinolate biosynthesis as demonstrated by an in vitro microsomal enzyme system isolated from jasmonic acid-induced seedlings of Sinapis alba L.",
abstract = "An in vitro enzyme system for the conversion of amino acid to oxime in the biosynthesis of glucosinolates has been established by the combined use of an improved isolation medium and jasmonic acid-induced etiolated seedlings of Sinapis alba L. An 8-fold induction of de novo biosynthesis of the L-tyrosine-derived p-hydroxybenzylglucosinolate was obtained in etiolated S. alba seedlings upon treatment with jasmonic acid. Formation of inhibitory glucosinolate degradation products upon tissue homogenization was prevented by inactivation of myrosinase by addition of 100 mM ascorbic acid to the isolation buffer. The biosynthetically active microsomal enzyme system converted L-tyrosine into p-hydroxyphenylacetaldoxime and the production of oxime was strictly dependent on NADPH. The Km and Vmax values of the enzyme system were 346 μM and 538 pmol per mg of protein per h, respectively. The nature of the enzyme catalyzing the conversion of amino acid to oxime in the biosynthesis of glucosinolates has been the subject of much speculation. In the present paper, we demonstrate the involvement of cytochrome P450 by photoreversible inhibition by carbon monoxide. The inhibitory effect of numerous cytochrome P450 inhibitors confirms the involvement of cytochrome P450. This provides experimental documentation of similarity between the enzymes converting amino acids into the corresponding oximes in the biosynthesis of glucosinolates and cyanogenic glycosides.",
author = "Liangcheng Du and Jens Lykkesfeldt and Olsen, {Carl Erik} and Halkier, {Barbara Ann}",
year = "1995",
month = dec,
day = "19",
doi = "10.1073/pnas.92.26.12505",
language = "English",
volume = "92",
pages = "12505--12509",
journal = "Proceedings of the National Academy of Sciences of the United States of America",
issn = "0027-8424",
publisher = "The National Academy of Sciences of the United States of America",
number = "26",

}

RIS

TY - JOUR

T1 - Involvement of cytochrome P450 in oxime production in glucosinolate biosynthesis as demonstrated by an in vitro microsomal enzyme system isolated from jasmonic acid-induced seedlings of Sinapis alba L.

AU - Du, Liangcheng

AU - Lykkesfeldt, Jens

AU - Olsen, Carl Erik

AU - Halkier, Barbara Ann

PY - 1995/12/19

Y1 - 1995/12/19

N2 - An in vitro enzyme system for the conversion of amino acid to oxime in the biosynthesis of glucosinolates has been established by the combined use of an improved isolation medium and jasmonic acid-induced etiolated seedlings of Sinapis alba L. An 8-fold induction of de novo biosynthesis of the L-tyrosine-derived p-hydroxybenzylglucosinolate was obtained in etiolated S. alba seedlings upon treatment with jasmonic acid. Formation of inhibitory glucosinolate degradation products upon tissue homogenization was prevented by inactivation of myrosinase by addition of 100 mM ascorbic acid to the isolation buffer. The biosynthetically active microsomal enzyme system converted L-tyrosine into p-hydroxyphenylacetaldoxime and the production of oxime was strictly dependent on NADPH. The Km and Vmax values of the enzyme system were 346 μM and 538 pmol per mg of protein per h, respectively. The nature of the enzyme catalyzing the conversion of amino acid to oxime in the biosynthesis of glucosinolates has been the subject of much speculation. In the present paper, we demonstrate the involvement of cytochrome P450 by photoreversible inhibition by carbon monoxide. The inhibitory effect of numerous cytochrome P450 inhibitors confirms the involvement of cytochrome P450. This provides experimental documentation of similarity between the enzymes converting amino acids into the corresponding oximes in the biosynthesis of glucosinolates and cyanogenic glycosides.

AB - An in vitro enzyme system for the conversion of amino acid to oxime in the biosynthesis of glucosinolates has been established by the combined use of an improved isolation medium and jasmonic acid-induced etiolated seedlings of Sinapis alba L. An 8-fold induction of de novo biosynthesis of the L-tyrosine-derived p-hydroxybenzylglucosinolate was obtained in etiolated S. alba seedlings upon treatment with jasmonic acid. Formation of inhibitory glucosinolate degradation products upon tissue homogenization was prevented by inactivation of myrosinase by addition of 100 mM ascorbic acid to the isolation buffer. The biosynthetically active microsomal enzyme system converted L-tyrosine into p-hydroxyphenylacetaldoxime and the production of oxime was strictly dependent on NADPH. The Km and Vmax values of the enzyme system were 346 μM and 538 pmol per mg of protein per h, respectively. The nature of the enzyme catalyzing the conversion of amino acid to oxime in the biosynthesis of glucosinolates has been the subject of much speculation. In the present paper, we demonstrate the involvement of cytochrome P450 by photoreversible inhibition by carbon monoxide. The inhibitory effect of numerous cytochrome P450 inhibitors confirms the involvement of cytochrome P450. This provides experimental documentation of similarity between the enzymes converting amino acids into the corresponding oximes in the biosynthesis of glucosinolates and cyanogenic glycosides.

U2 - 10.1073/pnas.92.26.12505

DO - 10.1073/pnas.92.26.12505

M3 - Journal article

C2 - 8618930

AN - SCOPUS:0029556989

VL - 92

SP - 12505

EP - 12509

JO - Proceedings of the National Academy of Sciences of the United States of America

JF - Proceedings of the National Academy of Sciences of the United States of America

SN - 0027-8424

IS - 26

ER -

ID: 204499920