Long-term single-cell imaging and simulations of microtubules reveal principles behind wall patterning during proto-xylem development

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

  • René Schneider
  • Kris van’t Klooster
  • Kelsey L. Picard
  • Jasper van der Gucht
  • Taku Demura
  • Marcel Janson
  • Arun Sampathkumar
  • Eva E. Deinum
  • Tijs Ketelaar
  • Persson, Staffan

Plants are the tallest organisms on Earth; a feature sustained by solute-transporting xylem vessels in the plant vasculature. The xylem vessels are supported by strong cell walls that are assembled in intricate patterns. Cortical microtubules direct wall deposition and need to rapidly re-organize during xylem cell development. Here, we establish long-term live-cell imaging of single Arabidopsis cells undergoing proto-xylem trans-differentiation, resulting in spiral wall patterns, to understand microtubule re-organization. We find that the re-organization requires local microtubule de-stabilization in band-interspersing gaps. Using microtubule simulations, we recapitulate the process in silico and predict that spatio-temporal control of microtubule nucleation is critical for pattern formation, which we confirm in vivo. By combining simulations and live-cell imaging we further explain how the xylem wall-deficient and microtubule-severing KATANIN contributes to microtubule and wall patterning. Hence, by combining quantitative microscopy and modelling we devise a framework to understand how microtubule re-organization supports wall patterning.

OriginalsprogEngelsk
Artikelnummer669
TidsskriftNature Communications
Vol/bind12
Udgave nummer1
Antal sider12
ISSN2041-1723
DOI
StatusUdgivet - 2021

Antal downloads er baseret på statistik fra Google Scholar og www.ku.dk


Ingen data tilgængelig

ID: 257975697