Biochar Amendment Increases C and N Retention in the Soil-Plant Systems: Its Implications in Enhancing Plant Growth and Water-Use Efficiency Under Reduced Irrigation Regimes of Maize (Zea mays L.)

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Dokumenter

  • Fulltext

    Forlagets udgivne version, 2,21 MB, PDF-dokument

Biochar influences soil biophysicochemical processes and nutrient availability, yet the effects of different biochar and soil water dynamics on carbon (C) and nitrogen (N) retention in the soil-plant systems remain unknown. Maize plants were grown in split-root pots filled with clay loam soil amended with wheat straw pellet biochar (WSP) and softwood pellet biochar (SWP) at 2% (w/w) and were either irrigated daily to 90% of water-holding capacity (FI) or irrigated with 70% volume of water used for FI to the whole root-zone (DI) or alternately to half root-zone (PRD) from the fourth leaf to grain-filling stage. Compared to the unamended controls, biochar amendment enhanced plant biomass and water-use efficiency, particularly when combined with PRD. Although the WSP amendment tended to decrease soil net N mineralization rate, it significantly increased C and N retention in the soil-plant systems. Compared to DI, PRD significantly increased soil respiration rate while lowering soil total organic C content. Moreover, PRD increased soil inorganic N content, which might be related to increased mineralization of soil organic C (SOC) and soil organic N (SON). Such effects might implicate that PRD outperformed DI in enhancing the mineralization of soil organic matter. Although PRD alone might not be a sustainable irrigation method because of greater C and N losses, biochar addition could alleviate these undesirable effects via depressing SOC and SON mineralization. Biochar amendment, especially WSP combined with PRD, could be a promising practice to increase maize growth and water-use efficiency while sustaining C and N retention in the soil-plant systems.

Highlights

center dot Effects of biochar addition and irrigation regimes on C and N retention in the soil-plant systems of maize were investigated.

center dot Biochar increased plant N retention and maize growth. Partial root-zone drying (PRD) irrigation increased soil respiration rate and soil organic C and N mineralization.

center dot Biochar addition combined with PRD improved maize growth, water-use efficiency, and sustained C and N retention in the soil-plant systems.

OriginalsprogEngelsk
TidsskriftJournal of Soil Science and Plant Nutrition
Vol/bind23
Sider (fra-til)1576-1588
Antal sider13
ISSN0718-9508
DOI
StatusUdgivet - 2023

ID: 347485003