Do plant communities show constant final yield?

Research output: Contribution to journalJournal articleResearchpeer-review

Documents

  • Fulltext

    Final published version, 851 KB, PDF document

Total biomass production of plant monocultures growing over a range of densities and harvested after a period of growth increases monotonically with density and then levels out at higher densities. This pattern is called constant final yield (CFY) and is considered one of the most general phenomena in plant ecology. If CFY applies to plant communities, it would be a key to understanding and predicting many community-level phenomena. We tested two primary hypotheses experimentally: (1) Mixtures of several species show CFY. (2) If so, the proportion of biomass production by the component species in a mixture does not change at densities above the density that reaches CFY. We performed a series of glasshouse experiments over 3 years using a “community density series,” in which the overall density of five species was varied while their proportions remained unchanged. In the first experiment, we grew a mixture of annual and perennial herbaceous species in mesocosms, and all species were also grown in monocultures at the corresponding densities. A similar experiment was performed in the second and third years, but only with annuals. A third experiment with mixtures only was performed in pots over 2 years. In all cases, aboveground biomass was harvested, separated by species, dried, and weighed. Perennials with underground storage organs produced maximum aboveground biomass at low or intermediate densities. In the second experiment, two of the species produced maximum biomass at the second-highest density in monoculture, while mixtures of all five species showed classical CFY behavior, and the contribution of the species to the mixture changed very little above the lowest density producing CFY. The results of the third experiment were also consistent with the hypotheses. In conclusion, CFY in aboveground biomass production was observed in communities of annual species, and the contribution of the individual species was relatively insensitive to an increase in density above that reaching CFY, i.e., competitive performance of the species changed with density until CFY was reached. Evidence for CFY was stronger in mixture than in monoculture. Coexistence theory must include density as well as frequency dependence if densities are below CFY.
Original languageEnglish
Article numbere3802
JournalEcology
Volume103
Issue number11
Number of pages12
ISSN0012-9658
DOIs
Publication statusPublished - 2022

Number of downloads are based on statistics from Google Scholar and www.ku.dk


No data available

ID: 313706280