Structure of single sheet iron oxides produced from surfactant interlayered green rusts

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

Structure of single sheet iron oxides produced from surfactant interlayered green rusts. / Yin, Zhou; Dideriksen, Knud; Abdelmoula, Mustapha; Ruby, Christian; Michel, Frederick Marc; Bjerrum, Morten Jannik; Hansen, Hans Christian B.

In: Applied Clay Science, Vol. 170, 15.03.2019, p. 86-96.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Yin, Z, Dideriksen, K, Abdelmoula, M, Ruby, C, Michel, FM, Bjerrum, MJ & Hansen, HCB 2019, 'Structure of single sheet iron oxides produced from surfactant interlayered green rusts', Applied Clay Science, vol. 170, pp. 86-96. https://doi.org/10.1016/j.clay.2019.01.009

APA

Yin, Z., Dideriksen, K., Abdelmoula, M., Ruby, C., Michel, F. M., Bjerrum, M. J., & Hansen, H. C. B. (2019). Structure of single sheet iron oxides produced from surfactant interlayered green rusts. Applied Clay Science, 170, 86-96. https://doi.org/10.1016/j.clay.2019.01.009

Vancouver

Yin Z, Dideriksen K, Abdelmoula M, Ruby C, Michel FM, Bjerrum MJ et al. Structure of single sheet iron oxides produced from surfactant interlayered green rusts. Applied Clay Science. 2019 Mar 15;170:86-96. https://doi.org/10.1016/j.clay.2019.01.009

Author

Yin, Zhou ; Dideriksen, Knud ; Abdelmoula, Mustapha ; Ruby, Christian ; Michel, Frederick Marc ; Bjerrum, Morten Jannik ; Hansen, Hans Christian B. / Structure of single sheet iron oxides produced from surfactant interlayered green rusts. In: Applied Clay Science. 2019 ; Vol. 170. pp. 86-96.

Bibtex

@article{582855d013414b7f94026765b8ab196a,
title = "Structure of single sheet iron oxides produced from surfactant interlayered green rusts",
abstract = "Ultrathin iron oxide particles are of high interest due to their large surface areas and unusual physical and chemical properties. Previous works have shown that single sheet iron oxides (SSI) can be formed via delamination of oxidized layered iron (hydr)oxides (green rusts, GR) interlayered by dodecanoate. However, there is considerable uncertainty on the true structure of both starting material and final products, and the reaction pathway. In this work, we describe a robust method for SSI synthesis and provide detailed structural characterization of the initial, intermediate and final phases to decipher the reaction mechanism. The SSI product has the formula FeO0.82(OH)1.38·0.7H2O, and consists of platelets with a height of 1 nm and lateral dimensions of 20 to 100 nm as observed by Atomic Force Microscopy and Transmission Electron Microscopy. M{\"o}ssbauer spectroscopy from 300 to 9 K shows that SSI is distinct from goethite, ferrihydrite and feroxyhite. Pair distribution function (PDF) analysis of high energy X-ray scattering data reveals that SSI has two distinct nearest neighbor Fe–Fe distances in contrast to the single distance in the parent FeII-FeIII (hydr)oxide composed of entirely edge-sharing octahedra. Modeling of the SSI PDF data indicates that oxidation of FeII to FeIII of dodecanoate-intercalated green rust results in displacements of Fe atoms perpendicular from the parent iron (hydr)oxide layer, forming a material that consists of iron polyhedra linked by both corner- and edge-sharing. This model which is different from the previously published model, matches the measured SSI thickness and electron diffraction pattern. This elucidated reaction pathway confirms that the dodecanoate interlayers in GR hinders Fe polymerization across interlayers and thus restrict chemical transformations to largely two-dimensional space. The increase of single- and double- coordinated O/OH groups in the SSI compared with the parent GRs is expected to give a high reactivity of SSI as surface complexation sorbents.",
keywords = "Delamination, Layered double hydroxides, Single sheet iron oxides, Two-dimensional material",
author = "Zhou Yin and Knud Dideriksen and Mustapha Abdelmoula and Christian Ruby and Michel, {Frederick Marc} and Bjerrum, {Morten Jannik} and Hansen, {Hans Christian B.}",
year = "2019",
month = mar,
day = "15",
doi = "10.1016/j.clay.2019.01.009",
language = "English",
volume = "170",
pages = "86--96",
journal = "Applied Clay Science",
issn = "0169-1317",
publisher = "Elsevier",

}

RIS

TY - JOUR

T1 - Structure of single sheet iron oxides produced from surfactant interlayered green rusts

AU - Yin, Zhou

AU - Dideriksen, Knud

AU - Abdelmoula, Mustapha

AU - Ruby, Christian

AU - Michel, Frederick Marc

AU - Bjerrum, Morten Jannik

AU - Hansen, Hans Christian B.

PY - 2019/3/15

Y1 - 2019/3/15

N2 - Ultrathin iron oxide particles are of high interest due to their large surface areas and unusual physical and chemical properties. Previous works have shown that single sheet iron oxides (SSI) can be formed via delamination of oxidized layered iron (hydr)oxides (green rusts, GR) interlayered by dodecanoate. However, there is considerable uncertainty on the true structure of both starting material and final products, and the reaction pathway. In this work, we describe a robust method for SSI synthesis and provide detailed structural characterization of the initial, intermediate and final phases to decipher the reaction mechanism. The SSI product has the formula FeO0.82(OH)1.38·0.7H2O, and consists of platelets with a height of 1 nm and lateral dimensions of 20 to 100 nm as observed by Atomic Force Microscopy and Transmission Electron Microscopy. Mössbauer spectroscopy from 300 to 9 K shows that SSI is distinct from goethite, ferrihydrite and feroxyhite. Pair distribution function (PDF) analysis of high energy X-ray scattering data reveals that SSI has two distinct nearest neighbor Fe–Fe distances in contrast to the single distance in the parent FeII-FeIII (hydr)oxide composed of entirely edge-sharing octahedra. Modeling of the SSI PDF data indicates that oxidation of FeII to FeIII of dodecanoate-intercalated green rust results in displacements of Fe atoms perpendicular from the parent iron (hydr)oxide layer, forming a material that consists of iron polyhedra linked by both corner- and edge-sharing. This model which is different from the previously published model, matches the measured SSI thickness and electron diffraction pattern. This elucidated reaction pathway confirms that the dodecanoate interlayers in GR hinders Fe polymerization across interlayers and thus restrict chemical transformations to largely two-dimensional space. The increase of single- and double- coordinated O/OH groups in the SSI compared with the parent GRs is expected to give a high reactivity of SSI as surface complexation sorbents.

AB - Ultrathin iron oxide particles are of high interest due to their large surface areas and unusual physical and chemical properties. Previous works have shown that single sheet iron oxides (SSI) can be formed via delamination of oxidized layered iron (hydr)oxides (green rusts, GR) interlayered by dodecanoate. However, there is considerable uncertainty on the true structure of both starting material and final products, and the reaction pathway. In this work, we describe a robust method for SSI synthesis and provide detailed structural characterization of the initial, intermediate and final phases to decipher the reaction mechanism. The SSI product has the formula FeO0.82(OH)1.38·0.7H2O, and consists of platelets with a height of 1 nm and lateral dimensions of 20 to 100 nm as observed by Atomic Force Microscopy and Transmission Electron Microscopy. Mössbauer spectroscopy from 300 to 9 K shows that SSI is distinct from goethite, ferrihydrite and feroxyhite. Pair distribution function (PDF) analysis of high energy X-ray scattering data reveals that SSI has two distinct nearest neighbor Fe–Fe distances in contrast to the single distance in the parent FeII-FeIII (hydr)oxide composed of entirely edge-sharing octahedra. Modeling of the SSI PDF data indicates that oxidation of FeII to FeIII of dodecanoate-intercalated green rust results in displacements of Fe atoms perpendicular from the parent iron (hydr)oxide layer, forming a material that consists of iron polyhedra linked by both corner- and edge-sharing. This model which is different from the previously published model, matches the measured SSI thickness and electron diffraction pattern. This elucidated reaction pathway confirms that the dodecanoate interlayers in GR hinders Fe polymerization across interlayers and thus restrict chemical transformations to largely two-dimensional space. The increase of single- and double- coordinated O/OH groups in the SSI compared with the parent GRs is expected to give a high reactivity of SSI as surface complexation sorbents.

KW - Delamination

KW - Layered double hydroxides

KW - Single sheet iron oxides

KW - Two-dimensional material

UR - http://www.scopus.com/inward/record.url?scp=85060538120&partnerID=8YFLogxK

U2 - 10.1016/j.clay.2019.01.009

DO - 10.1016/j.clay.2019.01.009

M3 - Journal article

AN - SCOPUS:85060538120

VL - 170

SP - 86

EP - 96

JO - Applied Clay Science

JF - Applied Clay Science

SN - 0169-1317

ER -

ID: 213322463