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Abstract

Kalanchoe pinnata from the stonecrop family (Crassulaceae) is a medicinal plant 
with high content of bioactive compounds. The plant is known for its anti-allergic, 
antioxidant, anti-infammatory, antimicrobial and antibacterial activities, which 
are mainly attributed to favonoids. Low yields of bioactive compounds in medic-
inal plants have led to new strategies for enhancing their biosynthetic capacity in 
order to increase the content of specialized metabolites. Herein, the accumula-
tion of specialized metabolites in plants can be triggered by elicitation methods. 
In the current study, different elicitation strategies were conducted towards the 
enhancement of bioactive compounds in K. pinnata leaves. We investigated the 
effect of natural transformation with the Agrobacterium rhizogenes strain A4 as 
means of biological elicitation on the total content of favonoids in the leaves of 
K. pinnata. Furthermore, the effect of supplemental UV-B radiation, as physical 
elicitor, was assessed on the total favonoid content of both wild-type (WT) and 
rol-transformed plants. The combined effect of the two mentioned elicitation 
methods was also examined. The data showed that presence of rol genes resulted 
in an increase of 24% in the total favonoid content compared to WT plants. The 
supplemental UV-B radiation increased the total content of favonoids with 95% 
and 89% in the WT and the rol+ plants, respectively. Collectively, a synergistic 
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effect was shown as the combination of the two factors dramatically increased 
(133%) the total favonoid content in K. pinnata leaves. 
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22.1 Introduction 

In recent years, medicinal plants have been receiving increasing attention from the 
pharmaceutical industries as the interest in alternative therapies in the worldwide 
population is growing (Newman and Crag 2007). With the insecurity that emerged 
from the danger and toxicity of using some synthetic drugs and antibiotics, there has 
been a general increase in the perception that naturally derived products are safer 
than synthetic (Husain 2010). Kalanchoe pinnata (also known as Bryophyllum pin-
natum), from the stonecrop family (Crassulaceae), is a popular plant both as orna-
mental and in folk medicine in many regions of the world. In the past, K. pinnata 
was used for alleviation or prevention of respiratory, stomach and hepatic problems, 
against tumour, kidney and spleen disorders, diabetes and vaginal diseases 
(Rahmatullah et  al. 2010). Nowadays, K. pinnata is used for the anti-tumourous 
(Supratman et al. 2001), antihypertensive (Bopda et al. 2014), anti-allergic (Cruz 
et al. 2012), antimicrobial, antioxidant (Tatsimo et al. 2012) and anti-infammatory 
(Nayak et al. 2010; Chibli et al. 2014) properties of its leaf extracts. These medici-
nal properties are attributed to the major classes of bioactive compounds in the 
plant, i.e. favonoids, alkaloids and terpenoids, which constitute the active compo-
nents of numerous herbal drugs (Kabera et al. 2014). 

Agrobacterium rhizogenes-mediated transformation is a promising strategy for 
increasing the content of bioactive compounds in plants. Agrobacterium rhizogenes 
is a soilborne pathogenic bacterium causing the hairy root disease by infecting and 
inserting specifc genes into the plant host’s genome from wounded sites (White 
et al. 1985). The root-inducing (Ri) phenotype is the result of transfer, integration 
and expression of bacterial transfer DNA (T-DNA) in the transformed plant. In agro-
pine strains of A. rhizogenes, the T-DNA is split into left (TL) and right (TR) frag-
ments. The TL-DNA comprises 18 open reading frames (ORFs) of which four root 
oncogenic loci (rol genes), termed rolA, rolB, rolC and rolD, are the major determi-
nants for the development of characteristic ‘hairy roots’ at the infection site and are 
suffcient for obtaining the A. rhizogenes-induced phenotypes (Casanova et al. 2005; 
Christey 2001; Christensen and Müller 2009). Based on the naturally occurring A. 
rhizogenes rol genes, transformation without the use of recombinant DNA can be 
termed ‘natural transformation’, and plants derived from this platform are considered 
as non-GMO in several countries in Europe (European Union 2001). The expression 
of the rol genes, alone or combined, often leads to profound metabolic alterations 
that included increased accumulation of bioactive compounds. Moreover, trans-
formed hairy roots often grow faster and are considered to be genetically stable 
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(Zhou et al. 2007). It has been reported that Vitis amurensis plant cells transformed 
with the rolB gene had a 100-fold increased production of the stilbenoid resveratrol 
(Kiselev et al. 2007), and rolC transformation of root cultures of Atropa belladonna 
increased the production of the alkaloids hyoscyamine and scopolamine 12-fold 
(Bonhomme et al. 2000). Moreover, Panax ginseng root cultures transformed with 
rolC displayed a production of ginsenosides of more than 6% dry weight, which is 
close to the maximum biosynthesis capacity (Bulgakov 2008). 

As plants use sunlight for photosynthesis, they are as a consequence exposed to 
the ultraviolet (UV) radiation that is present in sunlight. Although the shortwave 
band of the terrestrial solar spectrum (UV-B radiation) accounts for less than 0.5% 
of the total solar energy reaching the surface of the earth, its high energy causes 
damages to RNA, DNA, proteins and lipids (Heisler et al. 2003). Therefore, plants 
have developed mechanisms to protect themselves from the harmful effect of UV-B 
radiation. One of the protective mechanisms is the accumulation of phenolic pig-
ments in epidermal layers of leaves and stems, acting as flters that absorb UV-B 
light (Matsuura et  al. 2012; Nascimento et  al. 2015). Of all classes of phenolic 
compounds, favonoids are regarded as the most relevant for UV protection. 

In the present study, the role of A. rhizogenes-mediated transformation and UV-B 
radiation as enhancers of favonoid contents was explored. Total favonoids were 
determined by HPLC-DAD in wild-type (WT) and rol+ plants, prior and after expo-
sure to supplemental UV-B radiation to determine potential synergistic effects. 

22.2 Plant Material and Propagation 

WT and rol+ K. pinnata plants were provided by Knud Jepsen A/S and used as 
maternal plants for further propagation. The rol+ plants were generated by A. rhizo-
genes (strain ATCC43057 containing plasmid pRiA4)-mediated transformation fol-
lowing Christensen et al. (2008). The maternal plants were grown in greenhouse for 
9 months, in 2 L pots in a substrate mixture composed of peat supplemented with 
clay and silica (Weibulls Horto AB, Hammenhög, Sweden), under a 16 h day/8 h 
night photoperiod (23 °C/20 °C). 

For propagation, 10-cm nodal cuttings were excised from the mother plants, 
dipped in auxin powder (Floramon A 1%, Novo Trade ApS, Odense, Denmark), 
planted in pots with the same substrate mixture and placed into the greenhouse at 
the above conditions. Eight-week-old propagated plants of both K. pinnata WT and 
rol+ were used in the experiments. 

22.3 Climate Chamber Light Settings and UV-B Elicitation 

The experiment was set up in a climate chamber (VEPHQ 5/2000, Heraeus Vötsch 
GmbH, Balingen, Germany) (16 h photoperiod, 28 °C during the day and 20 °C 
during the night). LED lamps (FL300 SUNLIGHT fxture, Fiona Lighting, Senmatic 
A/S, Søndersø, Denmark) were used as source of white light, supplying a 
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photosynthetic active radiation (PAR) of 180 μmol  s−1  m−2 at plant height. The 
chamber was divided into two compartments by non-refective screens. The frst 
compartment included exclusively the use of white light from 7 to 23 h. In the sec-
ond compartment, supplemental UV-B radiation was applied. Plants were placed at 
a distance of 2 m above the UV-B lamps (broadband lamps, Philips TL 40W/12 RS 
SLV) and irradiated with a UV-B intensity of 3 W m−2 during 5 h per day (from 10 
to 15) for a week. UV-B light intensity was measured with a RM-12 Ultraviolet 
Light Meter equipped with a UV-B sensor (Opsytec Dr. Gröbel GmbH, Ettlingen, 
Germany). The irrigation was conducted manually (150 mL every second day). Two 
independent experiment repetitions displaced in time were conducted. 

22.4 Sample Preparation 

The pool of leaves from three plants was considered a biological replicate. After 
sampling, each biological replicate was ground into a powder in a Mortar Grinder 
Type RM 100 (Retsch GmBh, Haan, Germany), which was constantly kept cold by 
adding liquid N2. One gram of produced powder was extracted twice with 5 mL 
methanol for 24 h at 5 °C in the dark, mixed frequently and centrifuged at 1000 rpm 
for 10  min. The supernatant was evaporated to dryness and redissolved in 1  ml 
methanol and fltered by a Q-Max syringe flter (13 mm Ø, PTFE membrane pore 
size 0.22 μm, Frisenette APS, Knebel, Denmark) prior to HPLC-DAD analyses. 

22.5 Determination of Total Flavonoid Content (TFC) 
by High-Performance Liquid Chromatography-Diode 
Array Detection (HPLC-DAD) 

The HPLC separations were carried out on a Luna C18(2) column (150 × 4.6 mm, 
5 μm, 100  Å, Phenomenex, Allerod, Denmark) at room temperature. The mobile 
phase consisted of solvent A (aqueous with 0.1% formic acid) and solvent B (acetoni-
trile with 0.1% formic acid), and the following gradient system was used: 10–99% B 
(40 min), 99% B (34 min), 99–1% B (1 min) and 10% B (5 min). Flow rate was 
0.8 mL min−1 and the injection volume 10 μL. Quercetin was used as standard. The 
retention time and ultraviolet spectra were obtained for chromatogram peaks at 
254 nm. A quercetin calibration curve (R2 = 0.9974) was used to quantify the TFC in 
the samples, constructed by plotting the integrated peak area at 254 nm against the 
calibration curve. 

22.6 Statistical Analysis 

All analyses were performed with six biological replicates. Data were subjected to 
statistical analysis using Microsoft Excel statistical package (version 15.16). Two-
tailed Student’s t-test with 95% and 99.9% degrees of confdence (p ≤ 0.05 and 
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p ≤ 0.001, respectively) was performed to indicate signifcant differences. Data 
were expressed as mean ± standard error (SE). 

22.7 Elicitation of Flavonoids in Kalanchoe pinnata 

In this study, the accumulation of favonoids in K. pinnata plants was evaluated 
upon elicitation. Eight-week-old propagated K. pinnata plants were utilized in the 
experiment (Fig. 22.1). The TFC was calculated in leaves in WT and rol+ plants 
after 7 days of incubation with or without supplemental UV-B radiation (3 J m−2 

during 5 h per day) (Figs. 22.2 and 22.3). In the WT plants, TFC was 232 ± 12 μg g−1. 
In comparison, the corresponding content in rol+ plants was 287 ± 29 μg g−1, repre-
senting a signifcant increase of 24% compared to the WT plants (Fig. 22.3). These 
results are supported by studies in which plants derived from A. rhizogenes transfor-
mation have the ability to produce higher amounts of valuable secondary metabo-
lites in comparison with the wild-type counterparts (Giri and Narasu 2000; 
Oksman-Caldentey and Hiltunen 1996; Sevon and Oksman-Caldentey 2002). 
Integration of A. rhizogenes T-DNA in the plant’s genome and corresponding 
expression of rol genes often alter the plant morphology (Chandra 2011). However, 
the rol+ lines used in this study did not show differences in terms of fresh weight 
and morphology of leaves compared to control lines (data not shown). 

UV-B radiation induces photobiological stress in plants, which, among other 
effects, may lead to increased production of secondary metabolites (Schreiner et al. 
2014). In the present work, for both K. pinnata plants, WT and rol+, the TFC increased 
upon UV-B light treatment compared to untreated plants. UV-B-treated WT plants 
displayed values of 452 ± 33 μg g−1, representing an increase of 95% compared with 
the values of untreated WT plants. Similarly, the TFC of UV-B-treated rol+ plants was 
541  ±  21  μg  g−1, which was 89% higher than that of the untreated rol+ plants 
(Fig. 22.3). When treated plants were compared with untreated plants, signifcant dif-
ferences were observed at p values of ≤0.001 for both plant types. These results are in 

Fig. 22.1 Representative 8-week propagated WT (a) and rol+ (b) plants utilized in the UV-B 
elicitation experiment 
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Fig. 22.2 Characteristic HPLC chromatogram of favonoids in leaf extracts of K. pinnata recorded 
at 254 nm. Peak quantifcation was performed by plotting the integrated peak areas (1–10) against 
a quercetin calibration curve 

Fig. 22.3 Total favonoid ** 
content (TFC) in leaves of 600 
wild-type and rol+ 
K. Pinnata plants exposed 500 

to supplemental UV-B 
radiation (3 J m−2 for 5 h 
per day) or not (control) 
for 7 days. Data represent 
the mean ± SE, n = 6. (∗) 
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agreement with previous studies that reported induction of favonoids upon UV-B 
radiation. UV-B treatment increased total favonol content in young petunia plants 
(Ryan et al. 1998) and the concentrations of two surface favonols (calycopterin and 
3′-methoxycalycopterin) in Gnaphalium luteoalbum plants (Cuadra et  al. 1997). 
Mahdavian et al. (2008) reported that treatment with UV-B radiation increased proline, 
quercetin, rutin and anthocyanin concentrations in leaves of Capsicum annuum. 
Synthesis of phenolic substances such as anthocyanin and favonoids was also 



 
 
 

 
 
 

  
 

  

 

 

 
  

  

  22 Elicitation of Flavonoids in Kalanchoe pinnata by Agrobacterium... 401 

observed in UV-B-treated Arabidopsis thaliana seedlings (Bieza 2001). In another 
study in soybean (Middleton and Teramura 1993), it was indicated that UV-B light 
tolerance was positively correlated with the content of favonoids. The effect of UV-B 
radiation was also investigated in vegetables and fruits during the vegetative and post-
harvest period. Broccoli treated with supplementary UV-B radiation during the vege-
tative period increased the content of ascorbic acid, favonoids and other phenolic 
compounds (Topcu et  al. 2015). Ripe black currant fruits treated with short-term 
UV-B radiation after harvest showed an increase in the total content of phenolics and 
an altered phenolic composition (favonols, anthocyanins, hydroxycinnamic and 
hydroxybenzoic acids) (Huyskens-Keil et al. 2007). 

Additionally, the combination of rol transformation and UV-B light treatment 
resulted in the highest increase in the TFC (133%), when compared with untreated 
WT plants. To our knowledge, this represents the frst reported synergy between the 
presence of rol genes and the use of UV radiation in the elicitation of secondary 
metabolites in in vivo plants. Hence, we propose that natural transformation fol-
lowed by UV light elicitation can be a successful strategy for increasing the content 
of secondary metabolites in plants. 

22.8 Conclusion 

Agrobacterium rhizogenes-mediated transformation resulted in substantial increase 
of favonoid content in K. pinnata leaves (24%). Furthermore, supplemental UV-B 
radiation for 7 days increased the content of total favonoids in both WT and rol+ 
plants by 95% and 89%, respectively. Taken together, the synergistic effect of the 
two factors resulted in the highest increase of the total favonoid content (133%). 
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