

Yield and nutritional quality of lettuce as affected by bio-based fertilizers application: A field study

L. F. KEBALO, S. HOUOT, P. Garnier, L. VIEUBLE

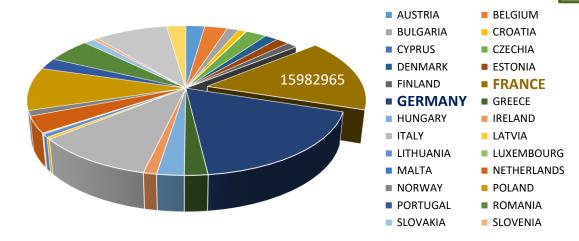
Content

Introduction

- ✓ Context
- √ Objective/Hypothesis
- Material and method
- √ Field experiment
- ✓ Incubation
- Results and discussion
- ✓ Composts and manure mineralisation
- ✓ Lettuce yield
- ✓ Heavy metals uptake
- ✓ Pathogens transfer
- Conclusion

Introduction

Material and method


Results and discussion

Conclusion

High quantities of bio-waste generated

Potential bio-waste generation per EU Country (tons/year)

- EU: Directive (EU) 2018/851: separate collection by January 2024.
- France : Separate collection by December 2023

Human urine in urban and peri-urban areas with separate collection promoted (Tristan et al., 2022)

Other wastes: greenwastes, manure..

Peri-urban agriculture

Arable crops

Market gardening

- ✓ Sustainable agriculture
- ✓ Circular economy: EU policies
- ✓ Recoupling cities with agriculture
- ✓ Reduction of chemical fertilizer use (high cost, energy and gaz consuming, from non renewables resources,P K)
- ✓ Necessity for organic farming

(European Commission, 2019)

Introduction

Material and method

Results and discussion

Conclusion

Concerns about effectiveness, heavy metals and pathogens when using these BBF under vegetables

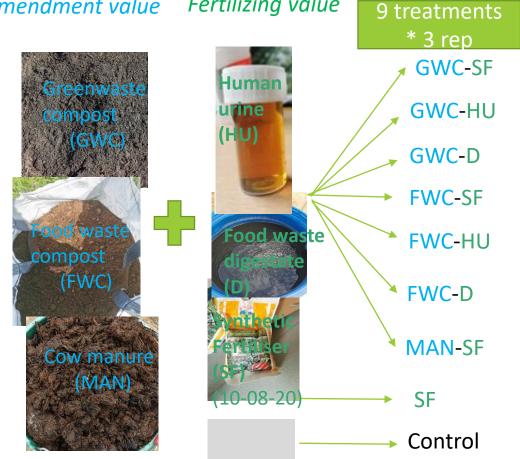
Overall aim

Assess the agronomic impacts of bio-based fertilizers (BBF) under lettuce production

Hypothesis

Use of BBF could lead to similar or more interesting yield and nutritional characteristics of lettuce than synthetic fertilizer (SF)

BBF would not lead to significant heavy metals or pathogens concerns on harvested lettuce



Results and discussion

Conclusion

Amendment value Fertilizing value 9 treatments • Field experiment

Compost/manure: 3-4 tC/ha

Mineral N +
Assumed N mineralized

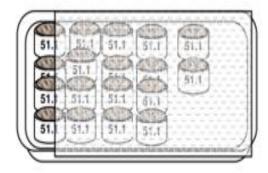
Min. N : SF, HU, D

Mixed to 15 cm layer

120 kg N/ha

Results and discussion

Conclusion


Field experiment

Assessed parameters

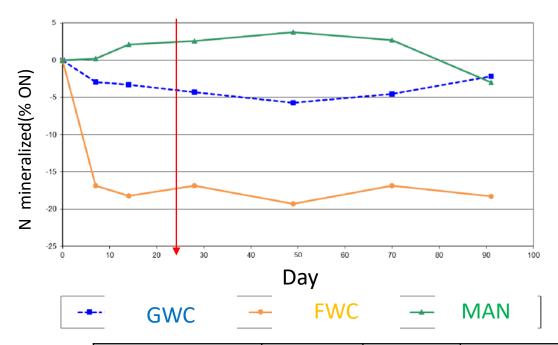
- ✓ DM yield at day 50 subsequent to BBF application
- ✓ N,P,K, Ca, Mg, nitrate content
- ✓ Heavy metals
- ✓ Pathogens

Check of the assumed composts and manure mineralized N

Incubation in lab

- Application of ground composts or manure
- Measurements at different time of the mineral N
- Incubation conditions : 28 °C, humidity pF=2.5

Introduction


Material and method

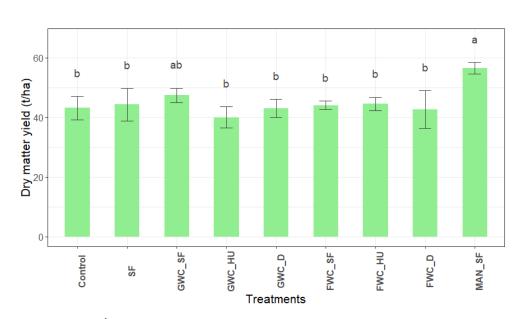
Results and discussion

Conclusion

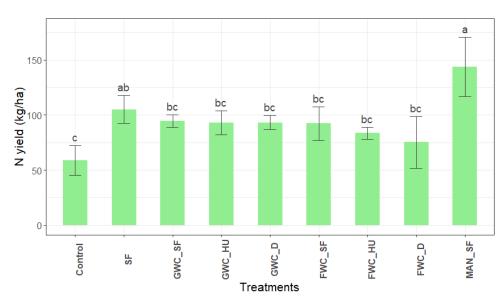
Composts and manure mineralisation

	GWC	FWC	MAN	
Amendments				
C/N	18	14,73	12,3	

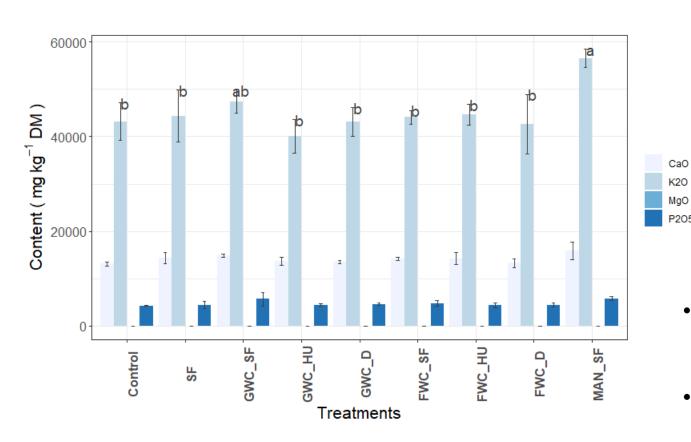
- Immobilisation FWC # mineralization of 11,2 % ON.
- Immobilisation GWC#0 % assumed
- Cow manure: 4% ON min, # 10% ON assumed

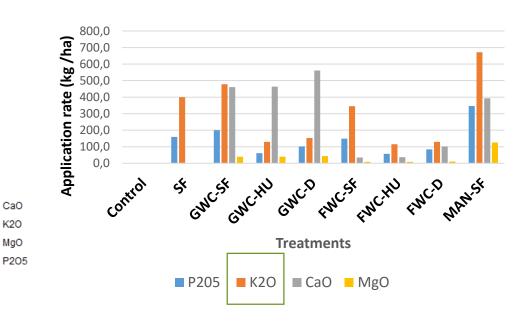

Actual applied BBF

	N mineral	N	Mineral N on growing
Tuestus suits	(amendment +	mineralized_50d	period (kg/ha)
Treatments	fertilizer) (kg/ha)	(kg/ha)	
Control	0	0,00	0
SF	120	0,00	120
GWC-SF	118	-5,7	112
GWC-D	117	-5,7	111
GWC-HU	106	-5,7	100
FWC-SF	68	-31,8	37
FWC-D	68	-31,8	36
FWC-HU	63	-31,8	31
MAN-SF	79	7,4	86

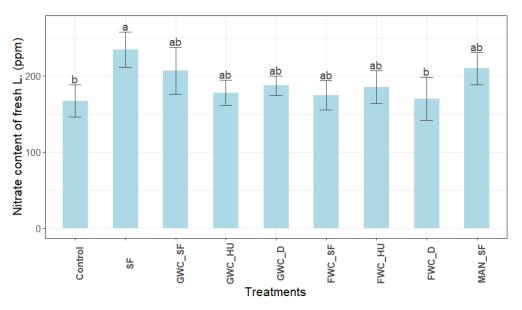


Lettuce dry matter and N yield




- ✓ Highest DM, N yield with manure + mineral fertiliser
- ✓ Limiting factors? No significant difference between treatments yield P₂O₅, K₂O, CaO, MgO
- ✓ Progressive release of N from manure allowed better uptake?

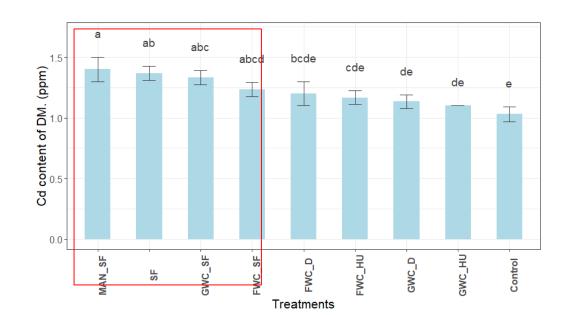
Lettuce properties



- Higher K content in plot fertilised with MAN-SF and GWC-SF probably due to the higher K₂O application
- P₂O₅, CaO, MgO did not differ

Effect of Bio-based fertilizers on nitrate and Cd content and other heavy metals

Below the limit of 3000 ppm


Trend of highest nitrate content with SF: more availability of nitrate from NPK (Antonious et al. ,2019)

Below the limit for Cd, Cr, Hg, Ni, Pb

Higher content with SF:

 Potential presence of Cd in NPK fertiliser (Mortvedt et Beaton, 1995)?

Results and discussion

Conclusion

Pathogens on lettuce

harversted lettuce pathogens	All the treatments
37 °C coagulase positive Staphylococci	<100
Clostridium perfringens	<10
Salmonella in 25 g	Not detected
Listeria monocytogenes in 25 g	Not detected

✓ Temperature, solar radiation, humidity probably influenced the viability of pathogens (Picard-Bonnaud et al., 1989; Jiang et al., 2004, Oliveira et al., 2011)

	Greenwaste					Limits
Pathogens in the applied products	compost	Food waste compost	Manure	Digestate	Human urine	(NF U 44-051)
Escherichia coli	<100	<100	< 400	< 100	< 100	< 1000 /g
Clostridium perfringens	<40	<10	> 15 000 🗶	50 🖶	<10	<10/g
Faecal enterococci	2862	94489 ≍	2567	965	129	< 10000 npp/g
Salmonella	Absent	Absent	Absent	Absent	Absence	Absent/ 25g
Listeria monocytogenes in 25 g	Absent	Absent	Absent	Absent		Absent/25g
Viable helminth	Absent	Absent	Present 💢	Absent	Absence	Absent/1,5g

Results and discussion

Conclusion

Assessment of BBF on lettuce productivity and quality in open-field

- Highest DM and N yield recorded with MAN-SF
- FWC led to high N immobilization: need to characterize the new food waste compost produced with electromechanical processing.
- Heavy metals and nitrate below the limits in all treatments
- No Pathogen's harm observed with BBF in the cultivation period
- Pharmaceuticals ??

Thank you for your attention

@: lelenda-florent.kebalo@inrae.fr

