Life cycle assessment of garden waste management options including long-term emissions after land application

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

Life cycle assessment of garden waste management options including long-term emissions after land application. / ten Hoeve, Marieke; Bruun, Sander; Jensen, Lars S.; Christensen, Thomas H.; Scheutz, Charlotte.

In: Waste Management, Vol. 86, 01.03.2019, p. 54-66.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

ten Hoeve, M, Bruun, S, Jensen, LS, Christensen, TH & Scheutz, C 2019, 'Life cycle assessment of garden waste management options including long-term emissions after land application', Waste Management, vol. 86, pp. 54-66. https://doi.org/10.1016/j.wasman.2019.01.005

APA

ten Hoeve, M., Bruun, S., Jensen, L. S., Christensen, T. H., & Scheutz, C. (2019). Life cycle assessment of garden waste management options including long-term emissions after land application. Waste Management, 86, 54-66. https://doi.org/10.1016/j.wasman.2019.01.005

Vancouver

ten Hoeve M, Bruun S, Jensen LS, Christensen TH, Scheutz C. Life cycle assessment of garden waste management options including long-term emissions after land application. Waste Management. 2019 Mar 1;86:54-66. https://doi.org/10.1016/j.wasman.2019.01.005

Author

ten Hoeve, Marieke ; Bruun, Sander ; Jensen, Lars S. ; Christensen, Thomas H. ; Scheutz, Charlotte. / Life cycle assessment of garden waste management options including long-term emissions after land application. In: Waste Management. 2019 ; Vol. 86. pp. 54-66.

Bibtex

@article{81dd7a2e4e114dc5ae13fae86a810715,
title = "Life cycle assessment of garden waste management options including long-term emissions after land application",
abstract = "A life cycle assessment (LCA) was performed on five garden waste treatment practices: the production of mature compost including the woody fraction (MCIW), the production of mature compost without the woody fraction (MCWW), the production of immature compost without the woody fraction (ICWW), fresh garden waste including the woody fraction (GWIW) and fresh garden waste without the woody fraction (GWWW). The assessment included carbon sequestration after land application of the garden waste and composts, and associated emissions. The removed woody fraction was incinerated and energy recovery included as heat and electricity. The functional unit of the assessment was treatment of 1000 kg of garden waste generated in Denmark. Overall, the results showed that composting of garden waste resulted in comparable or higher environmental impact potentials (depletion of abiotic resources, marine eutrophication, and terrestrial eutrophication and acidification) than no treatment before land application. The toxicity potentials showed the highest normalised impact potentials for all the scenarios, but were unaffected by the different garden waste treatments. The choice of energy source for substituted heat and electricity production affected the performance of the different treatment scenarios with respect to climate change. The scenarios with removal of the woody fraction performed better than the scenarios without removal of the woody fraction when fossil energy sources were substituted, but performed worse when renewable energy sources were substituted. Furthermore, the study showed the importance of including long-term emission factors after land application of fresh and composted garden waste products since the greatest proportion of carbon and nitrogen emissions occurred after land application in three out of the five scenarios for carbon and in all scenarios for nitrogen.",
keywords = "Carbon sequestration, Composting, Incineration, Nitrate leaching, Organic fertiliser, Use on land",
author = "{ten Hoeve}, Marieke and Sander Bruun and Jensen, {Lars S.} and Christensen, {Thomas H.} and Charlotte Scheutz",
year = "2019",
month = mar,
day = "1",
doi = "10.1016/j.wasman.2019.01.005",
language = "English",
volume = "86",
pages = "54--66",
journal = "Waste Management",
issn = "0956-053X",
publisher = "Pergamon Press",

}

RIS

TY - JOUR

T1 - Life cycle assessment of garden waste management options including long-term emissions after land application

AU - ten Hoeve, Marieke

AU - Bruun, Sander

AU - Jensen, Lars S.

AU - Christensen, Thomas H.

AU - Scheutz, Charlotte

PY - 2019/3/1

Y1 - 2019/3/1

N2 - A life cycle assessment (LCA) was performed on five garden waste treatment practices: the production of mature compost including the woody fraction (MCIW), the production of mature compost without the woody fraction (MCWW), the production of immature compost without the woody fraction (ICWW), fresh garden waste including the woody fraction (GWIW) and fresh garden waste without the woody fraction (GWWW). The assessment included carbon sequestration after land application of the garden waste and composts, and associated emissions. The removed woody fraction was incinerated and energy recovery included as heat and electricity. The functional unit of the assessment was treatment of 1000 kg of garden waste generated in Denmark. Overall, the results showed that composting of garden waste resulted in comparable or higher environmental impact potentials (depletion of abiotic resources, marine eutrophication, and terrestrial eutrophication and acidification) than no treatment before land application. The toxicity potentials showed the highest normalised impact potentials for all the scenarios, but were unaffected by the different garden waste treatments. The choice of energy source for substituted heat and electricity production affected the performance of the different treatment scenarios with respect to climate change. The scenarios with removal of the woody fraction performed better than the scenarios without removal of the woody fraction when fossil energy sources were substituted, but performed worse when renewable energy sources were substituted. Furthermore, the study showed the importance of including long-term emission factors after land application of fresh and composted garden waste products since the greatest proportion of carbon and nitrogen emissions occurred after land application in three out of the five scenarios for carbon and in all scenarios for nitrogen.

AB - A life cycle assessment (LCA) was performed on five garden waste treatment practices: the production of mature compost including the woody fraction (MCIW), the production of mature compost without the woody fraction (MCWW), the production of immature compost without the woody fraction (ICWW), fresh garden waste including the woody fraction (GWIW) and fresh garden waste without the woody fraction (GWWW). The assessment included carbon sequestration after land application of the garden waste and composts, and associated emissions. The removed woody fraction was incinerated and energy recovery included as heat and electricity. The functional unit of the assessment was treatment of 1000 kg of garden waste generated in Denmark. Overall, the results showed that composting of garden waste resulted in comparable or higher environmental impact potentials (depletion of abiotic resources, marine eutrophication, and terrestrial eutrophication and acidification) than no treatment before land application. The toxicity potentials showed the highest normalised impact potentials for all the scenarios, but were unaffected by the different garden waste treatments. The choice of energy source for substituted heat and electricity production affected the performance of the different treatment scenarios with respect to climate change. The scenarios with removal of the woody fraction performed better than the scenarios without removal of the woody fraction when fossil energy sources were substituted, but performed worse when renewable energy sources were substituted. Furthermore, the study showed the importance of including long-term emission factors after land application of fresh and composted garden waste products since the greatest proportion of carbon and nitrogen emissions occurred after land application in three out of the five scenarios for carbon and in all scenarios for nitrogen.

KW - Carbon sequestration

KW - Composting

KW - Incineration

KW - Nitrate leaching

KW - Organic fertiliser

KW - Use on land

UR - http://www.scopus.com/inward/record.url?scp=85060556290&partnerID=8YFLogxK

U2 - 10.1016/j.wasman.2019.01.005

DO - 10.1016/j.wasman.2019.01.005

M3 - Journal article

C2 - 30902240

AN - SCOPUS:85060556290

VL - 86

SP - 54

EP - 66

JO - Waste Management

JF - Waste Management

SN - 0956-053X

ER -

ID: 213322716