Effects of forest expansion on mountain grassland: changes within soil organic carbon fractions

Research output: Contribution to journalJournal articleResearchpeer-review

Background and aims. Grassland abandonment followed by forest succession is the dominant land-use change in the European Alps. We studied the impact of current forest expansion on mountain grassland on changes in physical soil organic carbon (SOC) fractions along a land-use and management gradient, focusing on changes in aggregate stability and particulate organic matter

Methods. Four successional stages were investigated: managed grassland, two transitional phases in which grassland abandonment led to colonization by Picea
abies (L.) Karst., and old mixed forest dominated by Fagus sylvatica L. and P. abies. Soil samples collected from the mineral soil (0–5 cm, 5–10 cm, 10–20 cm)
were fractionated following two procedures: 1) aggregate size fractionation, separating aggregates based on their dimension, and 2) size-density fractionation, separating stable aggregates from non-occluded POM.

Results. The dimension of aggregates assessed by aggregate size fractionation tended to increase, whereas SOC allocation to stable aggregates assessed by sizedensity fractionation decreased following conversion of grassland to forest (e.g. from 81 to 59 % in the 0–5 cm layer). The amount of SOC stored in POM increased by 3.8 Mg ha−1 in the integrated 0–20 cm layer from managed grassland to old forest.

Conclusions. The combination of two physical SOC fractionation procedures revealed that natural forest succession on abandoned grasslands led to a decline in physical SOC stability in the mineral soil, suggesting that SOC can become more susceptible to management and environmental change.
Original languageEnglish
JournalPlant and Soil
Issue number1-2
Pages (from-to)373-387
Number of pages15
Publication statusPublished - 2014

ID: 127129956