INFLUENCE OF SLURRY ACIDIFICATION ON SOIL NUTRIENT DYNAMICS AND GREENHOUSE GAS EMISSIONS Yusra Zireeni (Y.Zireeni@bangor.ac.uk), David R. Chadwick & Davey L. Jones School of Natural Sciences, Bangor University, Deiniol Road, Bangor, LL57 2UW, UK ## Background & Objectives **Acidification** of livestock **slurry** with sulphuric acid (H_2SO_4) is widely used in Europe to reduce NH_3 emissions and enhance the fertilizer value of slurry. However, the fate of the sulfate (SO_4^{2-}) and impact of acidification on soil carbon (C), nitrogen (N), and phosphorus (P) cycling remains poorly understood. This study aimed to disentangle the effects of cattle slurry, H^+ and SO_4^{2-} addition on soil nutrient cycling. **Greenhouse gas** (GHG) emissions (CO₂, CH₄, N₂O) and soil nutrient dynamics (NO₃-, NH₄+, PO₄³⁻, DOC, DON, pH; measured using soil extracts and Rhizon[®] samplers) were monitored over a 2-month period after treatment application. The key aim was to assess the interactions between H⁺ and SO_4^{2-} on soil nutrient dynamics (S, N, P, and C) and GHG in soil receiving H₂SO₄-acidified slurry. ## Experimental design The study included six treatments, where slurry acidification with sulfuric acid was compared with separate addition of K_2SO_4 , acidification with HCl, and mineral addition of H_2SO_4 and K_2SO_4 excluding the organic factor of the slurry. Photographs of the experimental set-up are shown below. - CO₂-C, and CH₄-C fluxes in slurry decreased with the reduction in slurry pH. However, - the effect of acidification on N₂O-N flux remains unclear (Fig.1. A,B,C). - Acidification in the presence of organic N, increases mineralization (Fig. 3.) - Acidification of slurry slowed nitrification of the mineralized N (NH₄-N). - Acidification of slurry in the current experiment did not affect organic P mineralization. - More studies are needed to better understand the interactions between the SO_4^{2-} and soil nutrient dynamics and GHG emissions. Acknowledgments Yusra Zireeni is granted by H2020 Marie SkłodowskaCurie Actions (No. 860127), Bangor University, UK.