Transforming yeast peroxisomes into microfactories for the efficient production of high-value isoprenoids

Research output: Contribution to journalJournal articlepeer-review

Documents

  • Fulltext

    Final published version, 1.52 MB, PDF document

Current approaches for the production of high-value compounds in microorganisms mostly use the cytosol as a general reaction vessel. However, competing pathways and metabolic cross-talk frequently prevent efficient synthesis of target compounds in the cytosol. Eukaryotic cells control the complexity of their metabolism by harnessing organelles to insulate biochemical pathways. Inspired by this concept, herein we transform yeast peroxisomes into microfactories for geranyl diphosphate-derived compounds, focusing on monoterpenoids, monoterpene indole alkaloids, and cannabinoids. We introduce a complete mevalonate pathway in the peroxisome to convert acetyl-CoA to several commercially important monoterpenes and achieve up to 125-fold increase over cytosolic production. Furthermore, peroxisomal production improves subsequent decoration by cytochrome P450s, supporting efficient conversion of (S)-(-)-limonene to the menthol precursor trans-isopiperitenol. We also establish synthesis of 8-hydroxygeraniol, the precursor of monoterpene indole alkaloids, and cannabigerolic acid, the cannabinoid precursor. Our findings establish peroxisomal engineering as an efficient strategy for the production of isoprenoids.

Original languageEnglish
JournalProceedings of the National Academy of Sciences of the United States of America
Volume117
Issue number50
Pages (from-to)31789-31799
Number of pages11
ISSN0027-8424
DOIs
Publication statusPublished - 2020

    Research areas

  • Compartmentalization, Metabolic engineering, Mevalonate pathway, Synthetic biology, Terpenoid

Number of downloads are based on statistics from Google Scholar and www.ku.dk


No data available

ID: 255786672