Foliar-applied ethephon enhances the content of anthocyanin of black carrot roots (Daucus carota ssp. sativus var. atrorubens Alef.)

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

Foliar-applied ethephon enhances the content of anthocyanin of black carrot roots (Daucus carota ssp. sativus var. atrorubens Alef.). / Barba Espin, Gregorio; Glied, Stephan; Crocoll, Christoph; Dzhanfezova, Tsaneta; Joernsgaard, Bjarne; Okkels, Finn; Lütken, Henrik Vlk; Müller, Renate.

In: B M C Plant Biology, Vol. 17, 70, 2017.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Barba Espin, G, Glied, S, Crocoll, C, Dzhanfezova, T, Joernsgaard, B, Okkels, F, Lütken, HV & Müller, R 2017, 'Foliar-applied ethephon enhances the content of anthocyanin of black carrot roots (Daucus carota ssp. sativus var. atrorubens Alef.)', B M C Plant Biology, vol. 17, 70. https://doi.org/10.1186/s12870-017-1021-7

APA

Barba Espin, G., Glied, S., Crocoll, C., Dzhanfezova, T., Joernsgaard, B., Okkels, F., Lütken, H. V., & Müller, R. (2017). Foliar-applied ethephon enhances the content of anthocyanin of black carrot roots (Daucus carota ssp. sativus var. atrorubens Alef.). B M C Plant Biology, 17, [70]. https://doi.org/10.1186/s12870-017-1021-7

Vancouver

Barba Espin G, Glied S, Crocoll C, Dzhanfezova T, Joernsgaard B, Okkels F et al. Foliar-applied ethephon enhances the content of anthocyanin of black carrot roots (Daucus carota ssp. sativus var. atrorubens Alef.). B M C Plant Biology. 2017;17. 70. https://doi.org/10.1186/s12870-017-1021-7

Author

Barba Espin, Gregorio ; Glied, Stephan ; Crocoll, Christoph ; Dzhanfezova, Tsaneta ; Joernsgaard, Bjarne ; Okkels, Finn ; Lütken, Henrik Vlk ; Müller, Renate. / Foliar-applied ethephon enhances the content of anthocyanin of black carrot roots (Daucus carota ssp. sativus var. atrorubens Alef.). In: B M C Plant Biology. 2017 ; Vol. 17.

Bibtex

@article{884561525d3741f18ca0c15548f0bf76,
title = "Foliar-applied ethephon enhances the content of anthocyanin of black carrot roots (Daucus carota ssp. sativus var. atrorubens Alef.)",
abstract = "BACKGROUND: Black carrots (Daucus carota ssp. sativus var. atrorubens Alef.) constitute a valuable source of anthocyanins, which are used as natural red, blue and purple food colourants. Anthocyanins and phenolic compounds are specialised metabolites, accumulation of which often requires elicitors, which act as molecular signals in plant stress responses. In the present study, ethephon, an ethylene-generating compound was explored as enhancer of anthocyanin and phenolic contents during growth of 'Deep Purple' black carrots. The effects of ethephon on several parameters were investigated, and the expression of biosynthetic anthocyanin genes was studied during growth and anthocyanin accumulation.RESULTS: Roots of ethephon-treated carrot plants exhibited an increase in anthocyanin content of approximately 25%, with values ranging from 2.25 to 3.10 mg g(-1) fresh weight, compared with values ranging from 1.50 to 1.90 mg g(-1) fresh weight in untreated roots. The most rapid accumulation rate for anthocyanins, phenolic compounds, soluble solids and dry matter was observed between 10 and 13 weeks after sowing in both untreated and ethephon-treated carrots. The differences in anthocyanin contents between untreated and treated carrots increased for several weeks after the ethephon treatment was terminated. Five cyanidin-based anthocyanin forms were identified, with variable relative abundance values detected during root growth. Overall, the expression of the anthocyanin biosynthetic genes analysed (PAL1, PAL3, F3H1, DFR1, LDOX2) increased in response to ethephon treatment, as did the expression of the MYB1 transcription factor, which is associated with activation of the phenylpropanoid pathway under stress conditions. In addition, a correlation was proposed between ethylene and sugar contents and the induction of anthocyanin synthesis.CONCLUSIONS: This study presents a novel method for enhancing anthocyanin content in black carrots. This finding is of economic importance as increased pigment concentration per unit of biomass implies improved profitability parameters in food colour production. We provide new insight into the accumulation patterns of the different cyanidin-based anthocyanins and phenolic compounds during root growth. Moreover, we show that enhanced anthocyanin content in ethephon-treated carrots is accompanied by increased expression of anthocyanin biosynthetic genes.",
keywords = "Journal Article",
author = "{Barba Espin}, Gregorio and Stephan Glied and Christoph Crocoll and Tsaneta Dzhanfezova and Bjarne Joernsgaard and Finn Okkels and L{\"u}tken, {Henrik Vlk} and Renate M{\"u}ller",
year = "2017",
doi = "10.1186/s12870-017-1021-7",
language = "English",
volume = "17",
journal = "BMC Plant Biology",
issn = "1471-2229",
publisher = "BioMed Central Ltd.",

}

RIS

TY - JOUR

T1 - Foliar-applied ethephon enhances the content of anthocyanin of black carrot roots (Daucus carota ssp. sativus var. atrorubens Alef.)

AU - Barba Espin, Gregorio

AU - Glied, Stephan

AU - Crocoll, Christoph

AU - Dzhanfezova, Tsaneta

AU - Joernsgaard, Bjarne

AU - Okkels, Finn

AU - Lütken, Henrik Vlk

AU - Müller, Renate

PY - 2017

Y1 - 2017

N2 - BACKGROUND: Black carrots (Daucus carota ssp. sativus var. atrorubens Alef.) constitute a valuable source of anthocyanins, which are used as natural red, blue and purple food colourants. Anthocyanins and phenolic compounds are specialised metabolites, accumulation of which often requires elicitors, which act as molecular signals in plant stress responses. In the present study, ethephon, an ethylene-generating compound was explored as enhancer of anthocyanin and phenolic contents during growth of 'Deep Purple' black carrots. The effects of ethephon on several parameters were investigated, and the expression of biosynthetic anthocyanin genes was studied during growth and anthocyanin accumulation.RESULTS: Roots of ethephon-treated carrot plants exhibited an increase in anthocyanin content of approximately 25%, with values ranging from 2.25 to 3.10 mg g(-1) fresh weight, compared with values ranging from 1.50 to 1.90 mg g(-1) fresh weight in untreated roots. The most rapid accumulation rate for anthocyanins, phenolic compounds, soluble solids and dry matter was observed between 10 and 13 weeks after sowing in both untreated and ethephon-treated carrots. The differences in anthocyanin contents between untreated and treated carrots increased for several weeks after the ethephon treatment was terminated. Five cyanidin-based anthocyanin forms were identified, with variable relative abundance values detected during root growth. Overall, the expression of the anthocyanin biosynthetic genes analysed (PAL1, PAL3, F3H1, DFR1, LDOX2) increased in response to ethephon treatment, as did the expression of the MYB1 transcription factor, which is associated with activation of the phenylpropanoid pathway under stress conditions. In addition, a correlation was proposed between ethylene and sugar contents and the induction of anthocyanin synthesis.CONCLUSIONS: This study presents a novel method for enhancing anthocyanin content in black carrots. This finding is of economic importance as increased pigment concentration per unit of biomass implies improved profitability parameters in food colour production. We provide new insight into the accumulation patterns of the different cyanidin-based anthocyanins and phenolic compounds during root growth. Moreover, we show that enhanced anthocyanin content in ethephon-treated carrots is accompanied by increased expression of anthocyanin biosynthetic genes.

AB - BACKGROUND: Black carrots (Daucus carota ssp. sativus var. atrorubens Alef.) constitute a valuable source of anthocyanins, which are used as natural red, blue and purple food colourants. Anthocyanins and phenolic compounds are specialised metabolites, accumulation of which often requires elicitors, which act as molecular signals in plant stress responses. In the present study, ethephon, an ethylene-generating compound was explored as enhancer of anthocyanin and phenolic contents during growth of 'Deep Purple' black carrots. The effects of ethephon on several parameters were investigated, and the expression of biosynthetic anthocyanin genes was studied during growth and anthocyanin accumulation.RESULTS: Roots of ethephon-treated carrot plants exhibited an increase in anthocyanin content of approximately 25%, with values ranging from 2.25 to 3.10 mg g(-1) fresh weight, compared with values ranging from 1.50 to 1.90 mg g(-1) fresh weight in untreated roots. The most rapid accumulation rate for anthocyanins, phenolic compounds, soluble solids and dry matter was observed between 10 and 13 weeks after sowing in both untreated and ethephon-treated carrots. The differences in anthocyanin contents between untreated and treated carrots increased for several weeks after the ethephon treatment was terminated. Five cyanidin-based anthocyanin forms were identified, with variable relative abundance values detected during root growth. Overall, the expression of the anthocyanin biosynthetic genes analysed (PAL1, PAL3, F3H1, DFR1, LDOX2) increased in response to ethephon treatment, as did the expression of the MYB1 transcription factor, which is associated with activation of the phenylpropanoid pathway under stress conditions. In addition, a correlation was proposed between ethylene and sugar contents and the induction of anthocyanin synthesis.CONCLUSIONS: This study presents a novel method for enhancing anthocyanin content in black carrots. This finding is of economic importance as increased pigment concentration per unit of biomass implies improved profitability parameters in food colour production. We provide new insight into the accumulation patterns of the different cyanidin-based anthocyanins and phenolic compounds during root growth. Moreover, we show that enhanced anthocyanin content in ethephon-treated carrots is accompanied by increased expression of anthocyanin biosynthetic genes.

KW - Journal Article

U2 - 10.1186/s12870-017-1021-7

DO - 10.1186/s12870-017-1021-7

M3 - Journal article

C2 - 28376712

VL - 17

JO - BMC Plant Biology

JF - BMC Plant Biology

SN - 1471-2229

M1 - 70

ER -

ID: 176615825