The impacts of phosphorus deficiency on the photosynthetic electron transport chain

Research output: Contribution to journalJournal articlepeer-review

Documents

Phosphorus (P) is an essential macronutrient, and P deficiency limits plant productivity. Recent work showed that P deficiency affects electron transport to photosystem I (PSI), but the underlying mechanisms are unknown. Here, we present a comprehensive biological model describing how P deficiency disrupts the photosynthetic machinery and the electron transport chain through a series of sequential events in barley (Hordeum vulgare). Phosphorus deficiency reduces the orthophosphate (Pi) concentration in the chloroplast stroma to levels that inhibit ATP synthase activity. Consequently, protons accumulate in the thylakoids and cause lumen acidification, which inhibits linear electron flow. Limited plastoquinol (PQH2) oxidation retards electron transport to the cytochrome (Cyt) b6f complex, yet the electron transfer rate of PSI is increased under steady-state growth light and is limited under high light conditions. Under P deficiency, the enhanced electron flow through PSI increases the levels of NADPH, whereas ATP production remains restricted and hence reduces CO2 fixation. In parallel, lumen acidification activates the qE component of the non-photochemical quenching (NPQ) mechanism and prevents over-excitation of photosystem II (PSII) and damage to the leaf tissue. Consequently, plants can be severely affected by P deficiency for weeks without displaying any visual leaf symptoms. All of the processes in the photosynthetic machinery influenced by P deficiency appear to be fully reversible and can be restored in less than 60 min after resupply of Pi to the leaf tissue.
Original languageEnglish
JournalPlant Physiology
Volume177
Pages (from-to)271-284
Number of pages14
ISSN0032-0889
DOIs
Publication statusPublished - 2018

Number of downloads are based on statistics from Google Scholar and www.ku.dk


No data available

ID: 195014472