ClimBar - An integrated approach to evaluate and utilise genetic diversity – University of Copenhagen

Forward this page to a friend Resize Print Bookmark and Share

Plant and Environmental Sciences > Research > Plant and Soil Science > Molecular Plant Breeding > Plant Quality > ClimBar

ClimBar - An integrated approach to evaluate and utilise genetic diversity

ClimBar will identify genome regions, genes, and alleles conferring the traits needed to breed resilient barley varieties adapted to the four climate change scenarios modelled for NE, NW, Mediterranean, and Central European grain producing zones by 2070.

Resilience will require combining multiple traits and responses that include plant architecture, physiology, and metabolism. These are determined by the unique allelic combinations that comprise the genome, the specific genomic marks of the epigenome, and their combined interactions with the external environment.

CWRs (crop wild relatives) and landraces contain a vast pool of (epi-) genetic diversity and interactions naturally selected for resilience against local environmental pressures. We will impose drought, flooding, temperature, and fungal challenges predicted to occur under each scenario and use precision phenotyping to measure the responses of a core representative set of modern and old varieties, landraces, and wild barley.

Combining these genetic and phenomic data will provide a platform for incorporating both in situ and ex situ allelic diversity into programs for breeding increased resilience to climate change in barley, increasing genetic richness of the cultivar set, and forming a basis for multi-varietal cultivation. Adapted, resilient germplasm created using ClimBar data, tools and models will provide food-chain security, economic stability and environmental sustainability.

Work Packages